0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Конденсатор в помощь аккумулятору

Конденсатор в помощь аккумулятору

Предлагаем неплохой вариант конструкции вечного перезаряжаемого аккумулятора, снабженной регулятором выходного напряжения. Вся схема основана на суперконденсаторах (ионисторах).

Хотя стоимость создания такой батареи довольно значительна, вложения быстро окупятся, если рассчитать затраты сэкономленные на покупке батареек для различных типов устройств. Кроме того, такую батарею можно заряжать разными способами (например от сетевого источника питания или от солнечных элементов), и время зарядки во многих случаях составляет всего несколько минут. Аккумулятор также можно использовать в «аварийных» ситуациях, например, для зарядки мобильного телефона на улице или для резервного питания освещения.

В представленной конструкции можно выбрать любое выходное напряжение в диапазоне от 3 до 33 В благодаря использованию преобразователя постоянного тока.

Схема аккумулятора на ионисторе

Схема основана на суперконденсаторах, емкость которых во много тысяч раз превышает обычные электролитические конденсаторы (1-3000 фарад), что делает их хорошими накопителями тока. В данном варианте использовались 2 конденсатора по 400 фарад, соединенных последовательно, что дает напряжение 5,4 В для питания преобразователя постоянного тока. Также схема оснащена зарядным модулем и цифровым вольтметром — индикатором напряжения на выходе.

Суперконденсаторы имеют множество преимуществ, они могут заряжаться и разряжаться даже миллион раз, они имеют чрезвычайно низкое эквивалентное последовательное сопротивление (ESR для суперконденсатора составляет в среднем 0,01 Ом, для батарей — от 0,02 до 0,2 Ома), что позволяет быстро заряжать и разряжать конденсатор. Заряженные конденсаторы не теряют накопленный заряд во время хранения, как в случае с батареями. Кроме того, они намного безопаснее для окружающей среды.

Конечно ионисторы также имеют несколько недостатков — они достаточно большие по размеру, работают при низком напряжении, поэтому требуется последовательное соединение. Кроме того, любые короткие замыкания являются чрезвычайно опасными для них.

Схема зарядки суперконденсаторов в данном случае очень проста и построена на основе LM317. Резисторы ограничивают выходное напряжение до 1,25 В. В качестве ограничителя напряжения использовались резисторы 2,2 Ом / 5 Вт, чтобы избежать возможности перегорания LM317. Ограничитель тока можно отключить с помощью перемычки. Защитой от обратного напряжения с заряженных конденсаторов являются два параллельных диода 1N4001.

В батарее конденсаторов работают два элемента, каждый емкостью 400 фарад и напряжением 2,7 В, соединенных последовательно. Это обеспечивает максимальное напряжение 5,4 В и результирующую емкость 200 фарад. Для питания преобразователя постоянного тока требуется напряжение 3,4 В, поэтому данное решение является идеальным — даже если напряжение на конденсаторах упадет с 5,4 до 3,4 В — преобразователь будет работать без проблем. Для удобства использовалась кнопка, позволяющая переключать вольтметр между выходом источником питания преобразователя или проверка состояния заряда конденсаторов.

В качестве преобразователя постоянного тока служит готовое устройство с напряжением питания не менее 3,4 В и диапазоном выходных напряжений до 33 В. Используемый инвертор имеет очень маленький размер, позволяет выдавать максимальное значение тока до 3 А и непрерывный до 2 А. Используемый преобразователь имеет мощность 15 Вт и эффективность 90%.

По желанию можно использовать модульный индикатор напряжения или просто стрелочный вольтметр. В этом решении установлен вольтметр 0-20 В с LED дисплеем. Далее принципиальная схема всей батареи.

Из определения емкости конденсатора следует, что 200F / 5,5 В разряжаются на 1 В (до 4,5 В), давая ток 1 А в течение 200 секунд. Таким образом, в этом конкретном случае инвертор будет работать в течение 7 минут, потребляя 1 А от конденсаторов.

Возможные улучшения и изменения, которые могут быть сделаны при повторении, включают создание сборок конденсаторов с большей емкостью и разработку более совершенной схемы управления зарядкой наряду с дополнительными функциями безопасности.

Суперконденсаторы, подобно обычным конденсаторам, сохраняют заряд в несколько раз дольше, чем химические элементы питания. Они также не боятся подзарядки, зарядный ток ограничен только внутренним сопротивлением. В общем либо для нас важно количество циклов, либо плотность энергии.

Сегодня эти конденсаторы можно купить всего за пару долларов за штуку. Кроме того это идеальное решение, например, в качестве буфера у солнечных элементах или ветротурбине, или в качестве источника энергии для сварочного аппарата.

Суперконденсаторы не являются чем-то новым (они используются в автомобильной аудиотехнике в течение уже долгого времени), но процесс производства электродов постоянно совершенствуется. Поскольку они сделаны из углеродного аэрогеля, этот материал чрезвычайно пористый и большая поверхность такого электрода равно большая емкость.

Что касается промышленного применения ионисторов, к примеру есть отвертка с таким источником питания. Можно работать несколько минут на один заряд. Это имеет большое преимущество перед всеми перезаряжаемыми батареями, так как время зарядки всего 50 секунд. Технология называется Flashcell.

Параметры отвертки на ионисторе

Зарядное устройство:

  • 220 В переменного тока.
  • Выходное напряжение 4,6 В постоянного тока
  • Потребляемая мощность 40 Вт, Ток 2,4 А
  • Время зарядки примерно 50 с.

Отвертка:

  • Напряжение 4,6 В
  • Ионисторы 2,3 В, 300F (2 шт.)
  • Крутящий момент 2,5 Нм
  • Обороты 250 мин-1
  • Вес 360 гр
  • Размеры 53 x 185 x 145 мм
  • Цена около 2000 рублей.

Отвертка с суперконденсаторами может быть интересной идеей для небольших работ которые делаем редко, например: вкручиваем крышку, вешаем картину, меняем батарейки в игрушках или приборах. Зарядка обычной отвертки, для того чтобы просто вкрутить 4 винта и отложить снова на месяц — не имеет смысла.

Питание электромобилей. За суперконденсаторами будущее?

В качестве источника хранения энергии для питания электромобилей сейчас в основном рассматривают литий-ионные аккумуляторные батареи. Первый аккумулятор данного типа изготовили в 1991 году. Основная характеристика, которая используется для оценки аккумуляторной батареи – удельная энергоемкость. Для литий-ионных аккумуляторов она около 250 Вт*ч/кг. Это означает, что в течение часа такой аккумулятор массой 1 килограмм может питать, например, электродвигатель мощностью 250 Ватт.

Если мощность электродвигателя легкового автомобиля будет 55 килоВатт (приблизительно 75 лошадиных сил), тогда для обеспечения 1 часа движения потребуется аккумулятор массой, равной 55.000/250 = 220 кг.

По сравнению с массой легкового автомобиля это не настолько много, но это только 1 час пробега, за который автомобиль проедет в среднем 60 километров пути. Если решать задачу увеличения пробега «в лоб», то необходимо по-тупому пропорционально увеличивать массу. А это, прежде всего, увеличение стоимости. Поэтому в электромобилях применяют различные электросберегающие технологии, например, во время торможения энергия возвращается в аккумуляторную батарею.

Недостатки литий-ионных аккумуляторных батарей

  1. Предельное количество циклов заряд-разряд. При последних технологиях количество этих циклов доходит до 10000. Если заряжать-разряжать АКБ пару раз в день, он может прожить лет десять, не более. Сейчас гарантийный срок работы производители определяют около 8 лет. Пока подержанный авто доберется к российским покупателям, АКБ надо будет менять, а это половина стоимости авто.
  2. Необходимость хранения АКБ в заряженном виде. Если довести заряд аккумулятора до нуля, и оставить на хранение в таком состоянии, он быстро теряет свою работоспособность.
  3. Невысокий диапазон рабочих температур. Температуры ниже минус 15 градусов Цельсия крайне опасны для литий-ионных аккумуляторов (как и выше плюс 50-ти).
  4. Опасность больших пиковых нагрузок по току.
  5. Большое время заряда в оптимальном цикле.

Что есть суперконденсатор?

Обычный конденсатор представляет собой две пластины проводника, разделенные тонким слоем диэлектрика. Конденсатор предназначен для накапливания заряда, то есть электрической энергии. Основная характеристика конденсатора – емкость. Она прямо пропорциональна площади пластин и обратно пропорциональна расстоянию между пластинами. Единица емкости конденсатора – 1 Фарада. Не вдаваясь в физические тонкости, произвести конденсатор такой огромной (по физическим размерам) емкости до последнего времени было трудным и бесполезным занятием. Конденсатор емкостью 1 Фарада мог занимать место приблизительно, как тумбочка. Если пересчитать емкость в Ватт-часы:

Читать еще:  Защита от ионизирующих излучений

Получится 0,5*1*3*3/3600 = 0,00125 Вт*час

То есть на такой «тумбочке» электромобиль и тронуться с места не сможет.

В начале 60-х Роберт Райтмайер запатентовал модель суперконденсатора. Вместо обычных пластин он предложил делать пористые пластины, у которых площадь на пару порядков больше. А сблизить площади этих неровных пластин он предложил с помощью электролита. Чтобы через электролит не протекал ток, пластины должны иметь разную проводимость: ионную и электронную. Потом эту технологию перекупила японская компания NEC. Практически реализовать такую технологию в полном качестве удалось только с приходом нанотехнологий. Сейчас, например, для покрытия пластин используют материал графен. Пару граммов этого вещества способны покрыть футбольное поле.

Таким образом, «тумбочка» стала размером «с ноготок».

На рисунке приведен конденсатор емкостью 10 Фарад. Конденсатор побольше выглядит солиднее. По размерам он, как граненый стакан.

Преимущества суперконденсаторов

Так чем же эти «банки» лучше привычных литий-ионных аккумуляторных батарей.

  1. Принцип накопления энергии. В аккумуляторных батареях энергия накапливается химическим способом, поэтому имеет ограниченное количество циклов. В суперконденсаторах идет накопление электрическим методом. Количество циклов заряда/разряда огромно (более 500.000).
  2. Если выбрать электролит большой плотности, рабочая температура может быть от минус 50 до плюс 80-ти градусов Цельсия. Это очень важно для наших широт.
  3. Скорость заряда минимальна. Время на зарядку суперконденсаторной батареи большой емкости предельно малое, менее пяти минут.
  4. Суперконденсатор может в течение короткого времени отдать большую энергию. На нем может быстро тронуться с места даже самосвал.
  5. Суперконденсатор без потерь свойств может очень долго находиться в полностью разряженном состоянии (спать).

Какие электромобили можно производить, используя суперконденсатор

Помимо «хороших» свойств суперконденсаторов, есть и «плохие», которые не дают его применять, где попало, прежде всего:

  • малая удельная емкость (приблизительно раз в 10 меньше, чем аккумуляторов);
  • линейная характеристика напряжения на конденсаторе при разряде (в начале разряда около 3-х вольт, посередине – 1,5 Вольта, а нужно для нормального питания — 3);
  • большой саморазряд (за суперконденсатор неделю может разрядиться наполовину);
  • большая стоимость суперконденсатора (тот, что показан на рисунке на 1200 Фарад стоит более 3.000 рублей);
  • невысокое рабочее напряжение (2,7 Вольта).

Говоря человеческим языком, масса конденсаторов значительно выше, их требуется подключать в схему последовательно, что уменьшает емкость дополнительно, увеличивает стоимость. Кроме этого, необходимы специальные схемы стабилизации питания и распределения напряжения.

Для примера, размер суперконденсатора для питания смартфона должен быть не менее пресловутого граненого стакана. Не представляется электромобиль с суперконденсаторным «туалетом» на борту. Зато такой «туалет» легко можно спрятать в грузовой машине или электротранспорте. Я не случайно привел такое сравнение. Внешний вид и размеры суперконденсаторной батареи что-то напоминают.

Масса такой батареи около 1300 килограммов.

Зарядное устройство, устанавливаемое на конечной остановке, не меньше.

Такие электробусы сейчас стали привычным транспортным средством в Минске. По характеру движения они напоминают троллейбус, немного дергаются во время старта и торможения. Это не случайно: при торможении они возвращают в батарею до 30-ти процентов энергии.

Длина маршрута этого 59-го маршрута в Минске около 12-ти километров, он подзаряжается после каждой поездки из одной конечной остановки в другую. Зарядные устройства находятся на конечных остановках. Длится заряд около 3-х минут. Водитель в это время отдыхает. Суперконденсаторные батареи производится под Минском, электробусы – в Минске. Такая небольшая длина пути до подзарядки пока адаптивна только к электротранспорту или, например, к производственным большегрузным машинам. Очень полезно, что суперконденсаторы могут «рвануть» с места груженый транспорт, быстро заряжаются при торможении. Обычный аккумулятор не способен это сделать.

Преимущество быстрого заряда существенно. Представьте, когда ночью в депо стоит куча электробусов на зарядке. Каждому подай по зарядному устройству. Суперконденсаторы утром по-быстрому зарядил – и в путь. Суперконденсаторы отлично пойдут для питания городских микроавтомобилей с небольшим дневным пробегом.

Какие перспективы, за чем будущее?

Я думаю, что будущее за соединением технологий. Это будут или аккумуляторные конденсаторы, или конденсаторные аккумуляторы. Сейчас такие технологии уже используются, например, пластины аккумуляторов покрывают графеном. Обязательно последует развитие технологий, уменьшение массы, увеличение рабочего напряжения, совершенствование элементов защиты. Поживем – увидим. То, что суперконденсаторы будут стоять в электромобилях, очевидный факт.

Cамодельный ионистор — суперконденсатор делаем своими руками.

Электрическая емкость земного шара, как известно из курса физики, составляет примерно 700 мкФ. Обычный конденсатор такой емкости можно сравнить по весу и объему с кирпичом. Но есть и конденсаторы с электроемкостью земного шара, равные по своим размерам песчинке — суперконденсаторты.

Появились такие приборы сравнительно недавно, лет двадцать назад. Их называют по-разному: ионисторами, иониксами или просто суперконденсаторами.

Не думайте, что они доступны лишь каким-то аэрокосмическим фирмам высокого полета. Сегодня можно купить в магазине ионистор размером с монету и емкостью в одну фараду, что в 1500 раз больше емкости земного шара и близко к емкости самой большой планеты Солнечной системы — Юпитера.

Любой конденсатор запасает энергию. Чтобы понять, сколь велика или мала энергия, запасаемая в ионисторе, важно ее с чем-то сравнить. Вот несколько необычный, зато наглядный способ.

Энергии обычного конденсатора достаточно, чтобы он мог подпрыгнуть примерно на метр-полтора. Крохотный ионистор типа 58-9В, имеющий массу 0,5 г, заряженный напряжением 1 В, мог бы подпрыгнуть на высоту 293 м!

Иногда думают, что ионисторы способны заменить любой аккумулятор. Журналисты живописали мир будущего с бесшумными электромобилями на суперконденсаторах. Но пока до этого далеко. Ионистор массой в один кг способен накопить 3000 Дж энергии, а самый плохой свинцовый аккумулятор — 86 400 Дж — в 28 раз больше. Однако при отдаче большой мощности за короткое время аккумулятор быстро портится, да и разряжается только наполовину. Ионистор же многократно и без всякого вреда для себя отдает любые мощности, лишь бы их могли выдержать соединительные провода. Кроме того, ионистор можно зарядить за считаные секунды, а аккумулятору на это обычно нужны часы.

Это и определяет область применения ионистора. Он хорош в качестве источника питания устройств, кратковременно, но достаточно часто потребляющих большую мощность: электронной аппаратуры, карманных фонарей, автомобильных стартеров, электрических отбойных молотков. Ионистор может иметь и военное применение как источник питания электромагнитных орудий. А в сочетании с небольшой электростанцией ионистор позволяет создавать автомобили с электроприводом колес и расходом топлива 1-2 л на 100 км.

Ионисторы на самую разную емкость и рабочее напряжение есть в продаже, но стоят они дороговато. Так что если есть время и интерес, можно попробовать сделать ионистор самостоятельно. Но прежде чем дать конкретные советы, немного теории.

Читать еще:  Владельцы ягуаров кто они

Из электрохимии известно: при погружении металла в воду на его поверхности образуется так называемый двойной электрический слой, состоящий из разноименных электрических зарядов — ионов и электронов. Между ними действуют силы взаимного притяжения, но заряды не могут сблизиться. Этому мешают силы притяжения молекул воды и металла. По сути своей двойной электрический слой не что иное, как конденсатор. Сосредоточенные на его поверхности заряды выполняют роль обкладок. Расстояние между ними очень мало. А, как известно, емкость конденсатора при уменьшении расстояния между его обкладками возрастает. Поэтому, например, емкость обычной стальной спицы, погруженной в воду, достигает нескольких мФ.

По сути своей ионистор состоит из двух погруженных в электролит электродов с очень большой площадью, на поверхности которых под действием приложенного напряжения образуется двойной электрический слой. Правда, применяя обычные плоские пластины, можно было бы получить емкость всего лишь в несколько десятков мФ. Для получения же свойственных ионисторам больших емкостей в них применяют электроды из пористых материалов, имеющих большую поверхность пор при малых внешних размерах.

На эту роль были перепробованы в свое время губчатые металлы от титана до платины. Однако несравненно лучше всех оказался… обычный активированный уголь. Это древесный уголь, который после специальной обработки становится пористым. Площадь поверхности пор 1 см3 такого угля достигает тысячи квадратных метров, а емкость двойного электрического слоя на них — десяти фарад!

Самодельный ионистор На рисунке 1 изображена конструкция ионистора. Он состоит из двух металлических пластин, плотно прижатых к «начинке» из активированного угля. Уголь уложен двумя слоями, между которыми проложен тонкий разделительный слой вещества, не проводящего электроны. Все это пропитано электролитом.

При зарядке ионистора в одной его половине на порах угля образуется двойной электрический слой с электронами на поверхности, в другой — с положительными ионами. После зарядки ионы и электроны начинают перетекать навстречу друг другу. При их встрече образуются нейтральные атомы металла, а накопленный заряд уменьшается и со временем вообще может сойти на нет.

Чтобы этому помешать, между слоями активированного угля и вводится разделительный слой. Он может состоять из различных тонких пластиковых пленок, бумаги и даже ваты.
В любительских ионисторах электролитом служит 25%-ный раствор поваренной соли либо 27%-ный раствор КОН. (При меньших концентрациях не сформируется слой отрицательных ионов на положительном электроде.)

В качестве электродов применяют медные пластины с заранее припаянными к ним проводами. Их рабочие поверхности следует очистить от окислов. При этом желательно воспользоваться крупнозернистой шкуркой, оставляющей царапины. Эти царапины улучшат сцепление угля с медью. Для хорошего сцепления пластины должны быть обезжирены. Обезжиривание пластин производится в два этапа. Вначале их промывают мылом, а затем натирают зубным порошком и смывают его струей воды. После этого прикасаться к ним пальцами не стоит.

Активированный уголь, купленный в аптеке, растирают в ступке и смешивают с электролитом до получения густой пасты, которой намазывают тщательно обезжиренные пластины.

При первом испытании пластины с прокладкой из бумаги кладут одна на другую, после этого попробуем его зарядить. Но здесь есть тонкость. При напряжении более 1 В начинается выделение газов Н2, О2. Они разрушают угольные электроды и не позволяют работать нашему устройству в режиме конденсатора-ионистора.

Поэтому мы должны заряжать его от источника с напряжением не выше 1 В. (Именно такое напряжение на каждую пару пластин рекомендовано для работы промышленных ионисторов.)

Подробности для любознательных

При напряжении более 1,2 В ионистор превращается в газовый аккумулятор. Это интересный прибор, тоже состоящий из активированного угля и двух электродов. Но конструктивно он выполнен иначе (см. рис. 2). Обычно берут два угольных стержня от старого гальванического элемента и обвязывают вокруг них марлевые мешочки с активированным углем. В качестве электролита употребляется раствор КОН. (Раствор поваренной соли применять не следует, поскольку при ее разложении выделяется хлор.)

Энергоемкость газового аккумулятора достигает 36 000 Дж/кг, или 10 Вт-ч/кг. Это в 10 раз больше, чем у ионистора, но в 2,5 раза меньше, чем у обычного свинцового аккумулятора. Однако газовый аккумулятор — это не просто аккумулятор, а очень своеобразный топливный элемент. При его зарядке на электродах выделяются газы — кислород и водород. Они «оседают» на поверхности активированного угля. При появлении же тока нагрузки происходит их соединение с образованием воды и электрического тока. Процесс этот, правда, без катализатора идет очень медленно. А катализатором, как выяснилось, может быть только платина… Поэтому, в отличие от ионистора, газовый аккумулятор большие токи давать не может.

Тем не менее, московский изобретатель А.Г. Пресняков (http://chemfiles.narod.r u/hit/gas_akk.htm) успешно применил для запуска мотора грузовика газовый аккумулятор. Его солидный вес — почти втрое больше обычного — в этом случае оказался терпим. Зато низкая стоимость и отсутствие таких вредных материалов, как кислота и свинец, казалось крайне привлекательным.

Газовый аккумулятор простейшей конструкции оказался склонен к полному саморазряду за 4-6 часов. Это и положило конец опытам. Кому же нужен автомобиль, который после ночной стоянки нельзя завести?

И все же «большая техника» про газовые аккумуляторы не забыла. Мощные, легкие и надежные, они стоят на некоторых спутниках. Процесс в них идет под давлением около 100 атм, а в качестве поглотителя газов применяется губчатый никель, который при таких условиях работает как катализатор. Все устройство размещено в сверхлегком баллоне из углепластика. Получились аккумуляторы с энергоемкостью почти в 4 раза выше, чем у аккумуляторов свинцовых. Электромобиль мог бы на них пройти около 600 км. Но, к сожалению, пока они очень дороги.

ATOM 1750. Запуск автомобиля от суперконденсаторов

Группа компаний AURORA с гордостью представляет конденсаторное пусковое устройство нового поколения AURORA ATOM 1750.

Небольшая историческая справка:

Как только человек придумал самодвижущуюся тележку на паровом двигателе (1768г.), а позже (1886) усовершенствовал мотор до ДВС – у водителя появилась задача не только направлять лошадиные силы в нужную сторону, но и запускать их в работу.

Проблема пуска двигателя в разные времена решалась по-разному. Для парового мотора достаточно было развести огонь под котлом, бензиновые двигатели требовали мышечной силы или химического источника тока.

С появлением аккумуляторов возникла необходимость обслуживания и контроля заряда стартерных батарей, особенно в зимний период. Часто, в помощь штатному АКБ, автовладельцу приходилось использовать внешний источник тока: сетевое пусковое устройство, запасной свинцово-кислотный АКБ, или новинку последних лет компактные пусковые устройства на базе Литий-Полимеров.

Главная проблема химических источников тока – саморазряд и старение. Срок службы классического свинцово-кислотного аккумулятора со свободным электролитом составляет около 3х лет. Гелевые и AGM аккумуляторы «живут» дольше, однако и они не вечны. Даже если АКБ бездействует – в нём происходят химические процессы, которые приводят к постепенной потере ёмкости батареи.

Это замечание верно и для пусковых устройств на основе аккумуляторов, например, средний срок службы Li-Po пускача составляет 3-5 лет, за это время токопроводный гель которым наполнены аккумуляторы твердеет и постепенно теряет свои свойства. Инженеры- конструкторы давно ищут источник тока который мог бы заменить аккумуляторы и избавить автовладельцев от «слабых мест» АКБ.

Читать еще:  Можно ли доливать тосол другой марки


Речь в данной статье пойдёт о конденсаторах. Точнее о супер-конденсаторах или ионисторах, способных отдавать огромные токи и обладающих рядом преимуществ в сравнении с аккумуляторами. Как заменить АКБ машины на сборку из конденсаторов, конструкторы ещё не придумали, однако инженерам из Carku удалось создать устройство способное помочь в запуске двигателя автомобиля, тот самый ATOM 1750.

Главное отличие данного аппарата от аккумуляторных аналогов – вечный срок службы! Если говорить о пусковых устройствах на базе Литий-полимерных или Свинцово-кислотных батарей, то продолжительность их работы ограничена одной-тремя тысячами циклов заряд/разряд. Конденсаторные пускачи обеспечивают до миллиона циклов. Для того, чтобы представить масштаб предположим, что Вы используете ATOM 1750 дважды в день в течение календарного года. Ресурса прибора при такой интенсивности работы хватит (1.000.000 : (365х2))= 1млн. : 730= 1369 лет.

Вторая особенность – неприхотливость ионисторов. Для хранения конденсаторных пусковых устройств не нужны особые условия: вы можете положить аппарат в бардачок или под сиденье авто, и вспомнить о нём, только когда аккумулятору машины понадобится помощь. Аппарат – идеальный вариант для забывчивых водителей. Если следить за уровнем заряда батареи нет ни времени ни желания – аппарат можно спокойно хранить в машине в самые лютые холода или в жару.

Третий плюс – наличие встроенного литиевого аккумулятора. Запас энергии, который хранится в полностью заряженной Li-Ion батарее аппарата ёмкостью 6000mAh – сможет зарядить конденсаторы устройства для более чем 6 пусков подряд. Батарея не участвует в пуске, и предназначена только для зарядки конденсаторов. Вот здесь и кроется та самая ложка дёгтя: любой аккумулятор боится глубокого разряда. Если батарею на долгое время оставить без зарядки – АКБ, рано или поздно, выйдет из строя. Саморазряд, свойственный в той или иной мере любому аккумулятору добьёт разряженную батарею. Напоминаем, что профилактическую зарядку неиспользуемой литиевой батареи необходимо проводить 1 раз в пол-года.

Высокие и низкие температуры хранения ускоряют процессы саморазряда и деградации АКБ. Температурный режим хранения встроенного аккумулятора рекомендованный производителем составляет от до +25С. Впрочем, даже если штатная батарея устройства выйдет из стоя конденсаторы АТОМ 1750 – запитанные от разряженного автомобильного АКБ всё равно смогут запустить двигатель машины.

Плюс номер четыре. Возможность зарядки ионисторов прибора от разряженной АКБ машины. Для пуска двигателя достаточно подключить крокодилы аппарата к клеммам «уставшего» АКБ и уже через 45-60 сек. – автомобиль будет готов к старту.

Более подробно про особенности АТОМ 1750:

Аппарат представляет собой профессиональный джамп-стартер. В отличие от Li-Po аналогов, пуск двигателя производится не за счёт энергии запасённой в аккумуляторе, а при помощи мощных ультраконденсаторов. Мощности пускача достаточно для запуска бензиновых двигателей объёмом до и для работы с дизельными моторами до .

Сборка из пяти ионисторов ёмкостью 350F каждый, выдаёт пусковые токи до 350А , что говорит о широком диапазоне применения данного устройства.

Высокий стартовый ток АТОМ 1750 подкреплён стабильным напряжением, которое выдают конденсаторы. Аппарат обеспечивает заявленный ток на протяжении 3х секунд, что является одним из важнейших условий запуска двигателя.

МОБИЛЬНОСТЬ

Вес пускача составляет 1.3 кг. Для сравнения, схожий по возможностям свинцово-кислотный бустер весит более 6 кг (DRIVE 900), а разница в габаритах впечатляет ещё больше.

На боковых гранях АТОМ 1750 расположены:

Яркий LED–фонарь, способный работать в трёх режимах. Для того, чтобы включить освещение и менять режимы работы следует нажать на кнопку на фронтальной панели;

USB вход (5В, 2А), для зарядки от сети, Power Bank или другого источника;

На передней панели расположен:

Дисплей (1) для отображения рабочих параметров, кнопка «Boost» (2) для заряда ионисторов от встроенного аккумулятора, кнопки включения фонаря и питания устройства (3).

ЗАЩИТА

В качестве силовых кабелей на аппарате используются медные провода сечением 6мм2, длинной 300 мм.

Интеллектуальный блок, не только защищает пусковое устройство от переполюсовки, короткого замыкания и обратных токов генератора, но и позволяет за несколько минут продиагностировать АКБ машины и вывести результаты проверки на табло.

АТОМ 1750 — подскажет владельцу, что аккумулятор машины нуждается в зарядке, либо, что АКБ – пора заменить на новый.

Если при подключении к аккумулятору машины на экране появляется надпись JUMP START READY – цепь работает в штатном режиме. Можно приступать к пуску двигателя.

Надпись «REVERSED» сообщает о неправильном подключении крокодилов. Следует проверить полярность – красный зажим должен быть соединён с плюсовым контактом АКБ, чёрный с минусовым.

ЗАРЯДКА

Обратите внимание, при подключении АТОМ к источнику тока, сначала заряжаются ультраконденсаторы, затем, начинается зарядка встроенной батареи устройства.

Представим себе ситуацию, когда вокруг никого а запустить двигатель у штатного АКБ машины – не получается.

Первый способ запуска машины с помощью АТОМ 175 – заключается в зарядке конденсаторов непосредственно от клемм разряженного АКБ автомобиля. После подключения аппарата дожидаемся появления надписи JUMP START READY и запускаем двигатель не снимая крокодилы с клемм. Время зарядки конденсаторов зависит от уровня разряда АКБ и составляет от 45 сек до 2.5мин.

Второй способ зарядки – через гнездо прикуривателя. Атом 1750 можно подключить к бортовой сети с помощью специального переходника из комплекта. Время зарядки около 2 минут.

Третий источник энергии – встроенная батарея прибора. После нажатия на кнопку Boost – аппарат использует энергию запасённую в Литиевом аккумуляторе. Время зарядки – 2-3мин.

Ну и последний вариант зарядки, если под рукой нет иных источников, — придётся искать розетку. С помощью блока питания от мобильной электроники (5V, 2А) – конденсаторы можно зарядить и от сети.

Ещё один Важный момент. Заряжать Атом 1750 можно не только от собственного разряженного АКБ, но и от ЛЮБОГО автомобиля-донора (большая и маленькая машины – показать). В отличие от «прикуривания» — операция зарядки ионисторов АТОМ 1750 — абсолютно безопасна, и не требует соблюдения никаких условностей, кроме полярности подключения.

ПУСК АВТОМОБИЛЯ

Для того, чтобы приступить к использованию Джамп-стартера хозяину машины следует убедиться, что зажигание автомобиля выключено. При подключении — следует соблюдать полярность: красный кабель устройства соединяется с плюсовой клеммой аккумулятора автомобиля, чёрный с минусовой клеммой.

После подключения можно приступать к запуску двигателя. Если в течение 3х секунд мотор не запустился – следует зарядить конденсаторы ещё раз и повторить попытку.

После того, как двигатель заработал «крокодилы» с клемм аккумулятора следует снять.

ATOM 1750 поставляется в картонной коробке.

В комплекте с аппаратом:

Шнур для зарядки аппарата от прикуривателя автомобиля;

Напоминаем, что одним из условий продолжительной службы аппарата является своевременная зарядка встроенного аккумулятора устройства, поэтому после каждого пуска с использованием энергии аккумулятора – необходимо отправить АТОМ на зарядку. При длительном хранении рекомендуем заряжать устройство до уровня 80-90% один раз в 6 месяцев. Хранить аппарат следует при плюсовой температуре.

Смотрите данную статью в видео-ролике:

Ссылка на основную публикацию
Adblock
detector