0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Проверка лямбда зонда осциллографом

Проверка датчика кислорода с помощью осциллографа.

Проверка датчика кислорода с помощью осциллографа.

Датчик кислорода устанавливается в потоке отработавших газов двигателя и служит для определения наличия кислорода в отработавших газах. Когда двигатель работает на обогащённой топливо-воздушной смеси, уровень содержания кислорода в отработавших газах понижен, при этом датчик генерирует сигнал высокого уровня напряжением 0,65…1,0V. При поступлении сигнала высокого уровня от датчика кислорода, блок управления двигателем начинает уменьшать длительность впрыска топлива, тем самым обедняя топливо-воздушную смесь. Когда двигатель работает на обеднённой топливо-воздушной смеси, уровень содержания кислорода в отработавших газах повышен, при этом датчик генерирует сигнал низкого уровня напряжением 40…200mV. При поступлении сигнала низкого уровня от датчика кислорода, блок управления двигателем начинает увеличивать длительность впрыска топлива, тем самым обогащая топливо-воздушную смесь. Таким образом, по сигналу от датчика кислорода блок управления двигателем корректирует длительность впрыска топлива так, что состав топливо-воздушной смеси оказывается максимально близким к стехиометрическому (идеальное соотношение воздух/топливо).

Исправный датчик кислорода начинает работать только после прогрева чувствительного элемента до температуры не ниже 350°С. Существуют одно-, двух-, трёх- и четырёх-проводные двухуровневые циркониевые датчики кислорода BOSCH. Одно- и двух-проводные датчики кислорода устанавливаются в выпускном коллекторе двигателя максимально близко к выпускным клапанам газораспределительного механизма и прогреваются до рабочей температуры за счёт высокой температуры отработавших газов. Трёх- и четырёх-проводные датчики кислорода прогреваются до рабочей температуры за счёт встроенного электрического нагревательного элемента и могут быть установлены на значительном расстоянии от выпускных клапанов газораспределительного механизма двигателя.

При условии сгорания стехиометрической топливо-воздушной смеси, напряжение выходного сигнала лямбда-зонда равно 445…450mV. Но расстояние от выпускных клапанов газораспределительного механизма двигателя до места расположения датчика и значительное время реакции чувствительного элемента датчика приводят к некоторой инерционности системы, что не позволяет непрерывно поддерживать стехиометрический состав топливо-воздушной смеси. Практически, при работе двигателя на установившемся режиме, состав смеси постоянно отклоняется от стехиометрического в диапазоне ±2…3% с частотой 1…2раза в секунду. Этот процесс чётко прослеживается по осциллограмме напряжения выходного сигнала датчика кислорода.

Осциллограмма напряжения выходного сигнала исправного датчика кислорода BOSCH. Двигатель работает на холостом ходу. Частота переключения сигнала составляет

Проверка выходного сигнала датчика.

Измерение напряжения выходного сигнала датчика кислорода блок управления двигателем производит относительно сигнальной “массы” датчика. Сигнальная “масса” двух- и четырёх-проводных датчиков кислорода BOSCH выведена через отдельный провод (провод серого цвета идущий от датчика) на разъём датчика. Сигнальная “масса” одно- и трёх- датчиков кислорода BOSCH соединена с металлическим корпусом датчика и при установке датчика автоматически соединяться с “массой” автомобиля через резьбовое крепление датчика. Выведенная через отдельный провод на разъём датчика сигнальная “масса” датчика кислорода в большинстве случаев так же соединена с “массой” автомобиля. Встречаются блоки управления двигателем, где провод сигнальной “массы” датчика кислорода подключен не к “массе” автомобиля, а к источнику опорного напряжения. В таких системах, измерение напряжения выходного сигнала датчика кислорода блок управления двигателем производит относительно источника опорного напряжения, к которому подключен провод сигнальной “массы” датчика кислорода.

Для просмотра осциллограммы напряжения выходного сигнала датчика кислорода, разъём осциллографического щупа должен быть подключен к любому из аналоговых входов №1-4 USB Autoscope II, чёрный зажим типа “крокодил” осциллографического щупа должен быть подсоединён к “массе” двигателя диагностируемого автомобиля, пробник щупа должен быть подсоединён параллельно сигнальному выводу датчика (провод чёрного цвета идущий от датчика).

Схема подключения к датчику кислорода BOSCH (на основе оксида циркония).
1 – точка подключения чёрного зажима типа “крокодил” осциллографического щупа;
2 – точка подключения пробника осциллографического щупа.

В окне программы “USB Осциллограф”, необходимо выбрать подходящий режим отображения, в данном случае “Управление => Загрузить настройки пользователя => Lambda”.

Когда лямбда-зонд прогревается до рабочей температуры, его выходное электрическое сопротивление значительно снижается, и он приобретает способность отклонять опорное напряжение, поступающее от блока управления двигателем через резистор с постоянным электрическим сопротивлением. В большинстве блоков управления двигателем, значение опорного напряжения равно 450mV. Такой блок управления двигателем считает датчик кислорода готовым к работе только после того, как вследствие прогрева датчик приобретает способность отклонять опорное напряжение в диапазоне более чем ±150…250mV.

Осциллограмма напряжения выходного сигнала исправного датчика кислорода BOSCH. Пуск прогретого до рабочей температуры двигателя. Время прогрева лямбда-зонда до рабочей температуры равно

Опорное напряжение на сигнальном проводе датчика кислорода некоторых блоков управления двигателем может иметь другое значение. Например, для блоков управления производства Ford оно равно 0V, а для блоков управления двигателем производства Daimler Chrysler – 5V.

Типовые неисправности.

Низкая частота переключения выходного сигнала датчика кислорода указывает на увеличенный диапазон отклонения состава топливо-воздушной смеси от стехиометрического.

Осциллограмма напряжения выходного сигнала неисправного датчика кислорода BOSCH. Двигатель работает на холостом ходу. Частота переключения сигнала занижена и составляет

Снижение частоты переключения выходного сигнала датчика кислорода может быть вызвана возросшим временем перехода выходного напряжения зонда от одного уровня к другому из-за старения или химического отравления датчика. Неисправность может привести к раскачке частоты вращения двигателя на режиме холостого хода и к потере “приёмистости” двигателя.

Ресурс датчика содержания кислорода в отработавших газах составляет 20 000…80 000 km. Из-за старения, выходное электрическое сопротивление датчика кислорода снижается при значительно более высокой температуре чувствительного элемента до значения, при котором датчик приобретает способность отклонять опорное напряжение. Из-за возросшего выходного электрического сопротивления, размах выходного напряжения сигнала датчика кислорода уменьшается. Стареющий датчик кислорода легко можно выявить по осциллограмме напряжения его выходного сигнала на таких режимах работы двигателя, когда поток и температура отработавших газов снижаются. Это режим холостого хода и малых нагрузок. Практически, стареющий датчик кислорода всё ещё работает на движущемся автомобиле, но как только нагрузка на двигатель снижается (холостой ход), размах сигнала быстро начинает уменьшаться вплоть до пропадания колебаний.

Осциллограмма напряжения выходного сигнала неисправного датчика кислорода BOSCH. Двигатель работает на холостом ходу. Переключения выходного сигнала отсутствуют.

Напряжение выходного сигнала стареющего датчика кислорода при работе двигателя на холостом ходу становится почти стабильным, его значение становится близким опорному напряжению 300…600mV.

Как проверить лямбда зонд в домашних условиях

Как проверить лямбда зонт самостоятельно? С этим вопросом сталкиваются большое количество владельцев автомобилей как отечественного производства, так и иномарок. В сегодняшней статье я расскажу вам о четырех полноценных способах проверки датчиков кислорода. Кстати проверка этих датчиков может потребоваться если сканер показывает ошибку, связанную с лямбда зондом, например низкий уровень сигнала датчика кислорода или увеличился расход топлива.

Лямбда зонт или датчик остаточного кислорода (например, в выпускном коллекторе двигателя или дымоходе отопительного котла). Позволяет оценивать количество оставшегося не сгоревшего топлива либо кислорода в выхлопных газах. Данные показания позволяют приготовлять оптимальную воздушно-топливную смесь, а также снижать количество вредных для человека побочных продуктов процесса сгорания.

Датчики лямбда зонда – какие бывают?

Современные датчики кислорода имеют 4-х проводную систему, но бывают исключения! Нередко встречаются одно, двух и трех проводные датчики лямбда зонд.

Современные датчики кислорода

У четырехпроводного датчика два провода идут на цепь подогрева и один провод – сигнальный. Также один провод идёт на массу проверки лямбда зонда, которую можно произвести самостоятельно.

Проверка напряжения в цепи подогрева датчика

Принято считать, что оптимальное напряжение в цепи подогрева датчика кислорода равняется 12,45В.

Для проверки напряжения в цепи подогрева датчика кислорода нам понадобится вольтметр.

  1. Включаем зажигание автомобиля
  2. Острыми щупами протыкаем провода или втыкаем щупы от вольтметра в разъемы провода идущий на датчик кислорода.
  3. Замеряем напряжение.

Напряжение на этих проводах должно равняться напряжению аккумуляторной батареи, примерно 12, 45В. Плюс приходит обычно приходит на нагреватели датчика кислорода напрямую через предохранители, а минус подается с блока управления двигателем. Поэтому если на нагреватель датчика кислорода не приходит плюс, то смотрите цепь, аккумулятор, предохранитель и датчик кислорода. Кстати в некоторых моделях автомобиля возможно наличие реле в этой цепи. Но если нет минуса, то смотрите всю цепь до блока управления. Возможно потерялся контакт в каком либо разъеме, либо блок управления по каким то причинам не видит минус.

Проверка исправности нагревателя лямбда зонда при помощи тестера

Для того, чтобы проверить сам нагреватель лямбда зонда путем замера сопротивления нам понадобиться Омметр, то есть тестер или мультиметр в режиме измерения сопротивления. Отсоедините разъем датчика кислорода и измеряете сопротивление между проводами нагревателя. Сопротивление может быть разное, но обычно оно находится в пределах 2-10 Ом. Если сопротивление не показывается вообще, то скорее всего в нагревателе датчика кислорода (лямбда зонда) произошёл обрыв и он требует замены.

Проверка опорного напряжения датчика кислорода (лямбда зонд)

Принято считать, что оптимальное опорное напряжение датчика кислорода равняется 0,45В.

И так первую проверку лямбда зонда, которую мы можем провести самостоятельно, это проверка опорного напряжения. Для этого нам понадобится тестер в режиме Вольтметра. Включаем зажигание и замеряем напряжение между сигнальным проводом и массой. В большинстве моделей автомобилей это напряжение должно равняться 0,45В. Допускаются небольшие отступления от нормы как в ту так и в другую сторону, но здесь уже все зависит от качества и состояния проводки в автомобиле.

Проверка сигнала лямбда зонда

Для проверки нагревателя лямбда зонда желательно иметь осциллограф либо осциллоскоп, но так же подойдет мото-тестер или хотя бы стрелочный, но не цифровой вольтметр. В принципе для данного способа проверки подойдет и цифровой вольтметр, но он более инертный, поэтому намного хуже реагирует на изменение показаний.

И так теперь проверяем сам сигнал лямбда зонда! Это самый сложный и ответственный способ. Первое, что необходимо сделать это обзавестись специальными приборами, которые я перечислил выше.

И так, запускаем двигатель прогреваем его до рабочей температуры. Дело в том, что датчик кислорода начинает работать только после прогрева, не после прогрева ДВС, а после прогрева датчика кислорода. На эту процедуру блоком отводиться определенное время, поэтому проверять сразу датчик кислорода нет никакого смысла.

Обычно, датчик кислорода начинает работать при температуре двигателя 60 – 70 градусов. Подсоединяете провода щупа между сигнальными проводами и проводами массы, поднимаете обороты двигателя примерно до 3000 об/мин, и наблюдаете за изменениями показаний лямбда зонда.

Сигнал с датчика кислорода должен меняться от 0,1 до 0,9 Вольт. Если изменения происходят в меньшем диапазоне, то прибор просто не успевает реагировать, либо датчик кислорода неисправен и требует замены.

Так же при 3000 об/мин засеките время, при котором меняются показания от большего к меньшему. При оптимальном варианте работы ДК за 10 секунд должно произойти 8 – 9 изменений. Если показания датчика изменяются реже, то вероятна ошибка медленный отклик датчика кислорода и он подлежит замене.

Как проверить лямбда-зонд своими руками?

Современные транспортные средства оснащены множеством датчиков, контролирующих работоспособность узлов и агрегатов. Одним из основных датчиков автомобиля является датчик остаточного кислорода (λ-зонд). Однако лишь немногие автомобилисты знают, как проверить лямбда-зонд самостоятельно, сэкономив время и финансы.

Что такое лямбда-зонд, и где он находится

В связи с ужесточением экологических норм для уменьшения токсичности выхлопных газов машины начали оборудовать каталитическим нейтрализатором (катализатором). Качество и продолжительность его работы находится в прямой зависимости от состава топливно-воздушной смеси (ТВС). В зависимости от сигналов, передаваемых лямбда-зондом, регулируется процентное соотношение в смеси топлива и воздуха.

Лямбда-зонд — система, определяющая, какое количество остаточного кислорода содержится в выхлопных газах. Иначе его можно назвать — кислородный датчик.

Располагается лямбда-зонд в выпускном коллекторе перед каталитическим нейтрализатором

Качественная очистка от токсичных выхлопов в катализаторе проводится только при наличии в них кислорода. Для контроля эффективности действия нейтрализатора и повышения точности исследования состояния выхлопных газов на многих моделях устанавливают второй лямбда-зонд на выходе катализатора.

Для повышения эффективности на современных автомобилях устанавливается дополнительный лямбда-зонд на выходе катализатора

Как работает датчик кислорода

Главной функцией лямбда-зонда считается измерение количество кислорода, содержащегося в выхлопных газах, и сравнение его с эталонным.

Электрические импульсы от кислородного датчика поступают в электронный блок управления (ЭБУ) топливной системой. Относительно этих данных ЭБУ регулирует состав ТВС, подаваемой в цилиндры.

Схема установки основного и дополнительного датчиков кислорода в автомобиле

Результатом совместной работы лямбда-зонда и ЭБУ является получение стехиометрической (теоретически идеальной, оптимальной) ТВС, состоящей из 14,7 частей воздуха и 1 части топлива, при которой λ=1. У обогащенной смеси (избыток бензина) λ 1.

График зависимости мощности (P) и расхода топлива (Q) от величины (λ)

Разновидности лямбда-зондов

Современные машины оснащаются следующими датчиками:

Циркониевый

Одна из наиболее распространённых моделей. Создана на основе диоксида циркония (ZrO2).

Циркониевый датчик кислорода действует по принципу гальванического элемента с твёрдым электролитом в виде керамики из диоксида циркония (ZrO2)

Керамический наконечник с диоксидом циркония с обеих сторон покрыт защитными экранами из токопроводящих пористых платиновых электродов. Свойства электролита, пропускающего ионы кислорода, проявляются при нагреве ZrO2 выше 350°C. Лямбда-зонд не будет работать, не прогревшись до нужной температуры. Быстрый нагрев осуществляется за счёт встроенного в корпус нагревательного элемента с керамическим изолятором.

Важно! Повышение температуры датчика до 950°C ведёт к его перегреву.

Выхлопные газы поступают к наружной части наконечника через специальные просветы в защитном кожухе. Атмосферный воздух попадает внутрь датчика через отверстие в корпусе или пористую водонепроницаемую уплотнительную крышку (манжету) проводов.

Разница потенциалов образуется за счёт передвижения ионов кислорода по электролиту между наружным и внутренним платиновыми электродами. Напряжение, образующееся на электродах, обратно пропорционально количеству О2 в выхлопной системе.

Напряжение, которое образуется на двух электродах, обратно пропорционально количеству кислорода

Относительно сигнала, поступающего от датчика, блок управления регулирует состав ТВС, стараясь приблизить её к стехиометрической. Напряжение, поступающее от лямбда-зонда, ежесекундно меняется по несколько раз. Это даёт возможность регулировать состав топливной смеси независимо от режима работы ДВС.

По количеству проводов можно выделить несколько типов циркониевых устройств:

  1. В однопроводном датчике существует единственный сигнальный провод. Контакт на массу осуществляется через корпус.
  2. Двухпроводное устройство оснащено сигнальным и заземляющим проводами.
  3. Трёх- и четырёхпроводные датчики снабжены системой нагрева, управляющим и заземляющим проводами к ней.

Циркониевые лямбда-зонды в свою очередь разделяются на одно-, двух-, трёх- и четырёхпроводные датчики

Титановый

Визуально похож на циркониевый. Чувствительный элемент датчика создан из диоксида титана. В зависимости от количества кислорода в выхлопных газах скачкообразно меняется объёмное сопротивление датчика: от 1 кОм при богатой смеси до более 20 кОм при бедной. Соответственно, меняется проводимость элемента, о чём датчик сигнализирует блоку управления. Рабочая температура титанового датчика — 700°C, поэтому наличие нагревательного элемента обязательно. Эталонный воздух отсутствует.

Из-за своей сложной конструкции, дороговизны и привередливости к перепадам температуры большое распространение датчик не получил.

Кроме циркониевых, существуют также кислородные датчики на основе двуокиси титана (TiO2)

Широкополосный

Конструктивно отличается от предыдущих 2 камерами (ячейками):

В камере для измерений с использованием электронной схемы модуляции напряжения поддерживается состав газов, соответствующий λ=1. Насосная ячейка при работающем моторе на обеднённой смеси устраняет лишний кислород из диффузионного зазора в атмосферу, при богатой смеси — пополняет диффузионное отверстие недостающими ионами кислорода из внешнего мира. Направление тока для перемещения кислорода в разные стороны меняется, а его величина пропорциональна количеству О2. Именно значение тока и служит детектором λ выхлопных газов.

Температура, необходимая для работы (не менее 600°C), достигается за счёт работы нагревательного элемента в датчике.

Широкополосные датчики кислорода детектируют лямбду от 0,7 до 1,6

Симптомы неисправности

Основными признаками, свидетельствующими о поломке кислородного датчика, считаются:

  • Повышенная токсичность выхлопных газов;
  • Нестабильная, прерывистая разгонная динамика;
  • Кратковременное включение лампы «CHECK ENGINE» при резком увеличении оборотов;
  • Нестабильные, постоянно меняющиеся холостые обороты;
  • Увеличение расхода топлива;
  • Перегрев катализатора, сопровождающийся потрескивающими звуками в его зоне при заглушённом моторе;
  • Постоянно горящий индикатор «CHECK ENGINE»;
  • Беспричинная сигнализация бортового компьютера о переобогащённой ТВС.

Нужно иметь в виду, что все эти отклонения могут быть симптомами и других поломок.

Длительность службы лямбда-зонда примерно 60-130 тыс. км. Причинами сокращения срока службы и поломки устройства может стать:

  • Применение при монтаже датчиков, не рассчитанных на высокие температуры герметиков (силиконовых);
  • Некачественный бензин (повышенное содержание этила, свинца, тяжёлых металлов);
  • Попадание масла в выхлопную систему в результате износа маслосъёмных колец или колпачков;
  • Перегрев датчика в результате некорректно выставленного зажигания, переобогащённой ТВС;
  • Множественные попытки завести мотор, приводящие к проникновению горючих смесей в систему выхлопа;
  • Нестабильный контакт, замыкание на массу, обрыв выходного провода;
  • Нарушение целостности конструкции датчика.

Способы диагностики кислородного датчика

Специалисты советуют проверять корректность работы лямбда-зонда каждые 10000 км пробега, даже если проблем в работе устройства не наблюдается.

Диагностику начинают с проверки надёжности соединения клеммы с датчиком и на наличие механических повреждений. Далее выкручивают лямбда-зонд из коллектора и осматривают защитный кожух. Небольшие отложения очищают.

Если в ходе визуального осмотра на защитной трубке датчика кислорода были выявлены следы сажи, сильные белые, серые или блестящие отложения, то лямбда-зонд следует заменить

Как проверить лямбда-зонд мультиметром (тестером)

Проверка датчика на работоспособность проводится по следующим параметрам:

  • Напряжение в нагревательной цепи;
  • «Опорное» напряжение;
  • Состояние нагревателя;
  • Сигнал датчика.

Схема подключения к лямбда-зонду в зависимости от его типа

Наличие напряжения в цепи подогрева определяют мультиметром или вольтметром в следующей последовательности:

  1. Не снимая разъём с датчика, включают зажигание.
  2. Щупы присоединяют к цепи подогрева.
  3. Показания на приборе должны совпадать с напряжением на аккумуляторе — 12В.

«+» идёт на датчик от аккумулятора через предохранитель. При его отсутствии прозванивают эту цепь.

«—» поступает от блока управления. Если он не обнаружен, проверяют клеммы цепи «лямбда-зонд — ЭБУ».

Замеры опорного напряжения проводятся теми же аппаратами. Последовательность действий:

  1. Включают зажигание.
  2. Замеряют напряжение между сигнальным проводом и массой.
  3. Прибор должен показать 0,45 В.

Для проверки нагревателя мультиметр выставляют в режим омметра. Этапы диагностики:

  1. Снимают разъём с устройства.
  2. Замеряют сопротивление между контактами нагревателя.
  3. Показания на разных кислородниках различные, но не должны выходить за пределы 2-10 Ом.

Важно! Отсутствие сопротивления говорит о разрыве в цепи нагревателя.

Вольтметр или мультиметр используются для проверки сигнала датчика. Для этого:

  1. Заводят двигатель.
  2. Прогревают его до рабочей температуры.
  3. Щупы прибора соединяют с сигнальным проводом и проводом массы.
  4. Обороты мотора увеличивают до 3000 об/мин.
  5. Следят за замерами напряжения. Должны наблюдаться скачки в диапазоне от 0,1 В до 0,9 В.

Если хотя бы при одной из проверок показатели разнятся от нормы, датчик неисправен и нуждается в замене.

Видео: проверка лямбда-зонда тестером

Проверка осциллографом

Главным преимуществом данной диагностики лямбда-зонда перед проверкой вольтметром и мультиметром является фиксация времени между однотипными изменениями выходного напряжения. Оно не должно превышать 120 мс.

  1. Щуп прибора подключают к сигнальному проводу.
  2. Мотор прогревают до рабочей температуры.
  3. Обороты двигателя повышают до 2000-2600 об/мин.
  4. По показаниям осциллографа определяют работоспособность кислородного датчика.

Диагностика осциллографом даёт наиболее полную картину работы лямбда-зонда

Превышение временного показателя или пересечение пределов напряжения нижнего 0,1 В и верхнего 0,9 В говорит о неисправном кислородном датчике.

Видео: диагностика датчика кислорода осциллографом

Другие способы проверки

Если в автомобиле есть бортовая система, то по сигналу «CHECK ENGINE», выдающему определённую ошибку, можно диагностировать состояние лямбда-зонда.

Перечень ошибок лямбда-зонда

Чтобы лямбда-зонд работал долго и эффективно, необходимо заправлять автомобиль только качественным топливом. Плановая и своевременная диагностика датчика кислорода поможет вовремя обнаружить его неисправность. Эта мера способна продлить срок эксплуатации не только самого датчика, но и катализатора.

Проверка лямбда зонда осциллографом

ЧАСТЬ I. ДАТЧИКИ ИНЖЕКТОРНЫХ И КАРБЮРАТОРНЫХ АВТОМОБИЛЕЙ

ДПДЗ (Датчик Положения Дроссельной Заслонки)

Датчик положения дроссельной заслонки(ДПДЗ) в СУД служит для определения степени и скорости открытия дроссельной заслонки. Выходное напряжение ДПДЗ изменяется в зависимости от нажатия педали акселератора и равно 0 , 3 – 4 , 8 В. В состоянии покоя это напряжение составляет 0 , 3 – 0 , 6 В, это соответствует 0 % открытия дроссельной заслонки.

Эталон. Датчик ОК

Неисправные датчики. Осциллограммы открытия дросселя

Открытие неисправного датчика

Осциллограммы закрытия неисправного датчика

Состояние покоя неисправного датчика

ДПКВ (Датчик Положения Коленчатого Вала)

ДПКВ в ЭСУД служит для определения положения и частоты вращения коленвала для осуществления общей синхронизации системы впрыска. Шкив коленвала имеет 58 зубцов. Точкой отсчета являются два пропущенных зубца на шкиве коленвала. На осциллограмме это место выглядит как резкий скачок напряжения вниз, а потом вверх. При исправном ДПКВ его минимальное напряжение должно быть не менее 6 В, максимальное достигает до 250 В.

ДМРВ (Датчик Массового Расхода Воздуха, MAF-Sensor)


ДМРВ является датчиком термоанемометрического типа. Устанавливается между воздушным фильтром и дроссельным патрубком. Сигнал ДМРВ представляет собой напряжение постоянного тока, изменяющееся в диапазоне от 1 до 5 В, величина которого зависит от количества воздуха, проходящего через датчик.

ДК (Датчик Кислорода, он же Lambda Zond)

Датчик кислорода служит для правильного определения соотношения воздух-топливо поступающего в цилиндры. В зависимости от напряжения кислородного датчика, ЭБУ корректирует параметры топливо-воздушной смеси по заложенной в нем программе управления. Если ЭБУ определяет топливо – воздушную смесь(ТВС) как бедную, что соответствует низкому выходному напряжению, то он увеличивает время открытого состояния форсунок, если ТВС богатая – высокое выходное напряжение – уменьшает время. При исправном датчике кислорода и СУД диапазон выходного напряжения равен 0 , 05 – 0 , 9 В.

ДФ (Датчик ФАЗ)

Датчик фаз устанавливается на двигателе ВАЗ- 2112 в верхней части головки блока цилиндров за шкивом впускного распредвала. На двигателях 2111 (Евро‑ 2 ) на заглушке справой стороны. В основу работы датчика заложен эффект Холла. На шкиве впускного распредвала расположен задающий диск с прорезью. Прохождение прорези через зону действия датчика фаз соответствует открытию впускного клапана первого цилиндра. Контроллер посылает на датчик фаз опорное напряжение 12 В. Напряжение на выходе датчика фаз циклически меняется от значения близкого к 0 (при прохождении прорези задающего диска впускного распредвала через датчик) до напряжения близкого напряжению АКБ (при прохождении через датчик кромки задающего диска). Таким образом при работе двигателя датчик фаз выдает на контроллер импульсный сигнал синхронизирующий впрыск топлива с открытием впускных клапанов. Сигналы у двигателя 2112 и 2111 (Евро‑ 2 ) совершенно одинаковые.

ДД (Датчик Детонации, Knock Sensor)

Широкополосный датчик детонации пьезокерамического типа устанавливается на блоке двигателя. Во время работы двигателя датчик генерирует сигнал напряжения переменного тока с частотой и амплитудой зависящей от частоты и амплитуды вибрации той части двигателя, на которой установлен датчик. При возникновении детонации амплитуда вибраций определенной частоты повышается, что приводит к увеличению амплитуды выходного сигнала ДД. Контроллер считывает этот сигнал (только в определенных положениях КВ, т.н «окно обнаружения детонациии»), фильтрует, усредняет и на основе полученных данных и корректирует угол опережения зажигания для гашения детонации.

Сигнал ЭБУ МП‑ 7 . 0

ДТОЖ (Датчик температуры охлаждающей жидкости)

Датчик температуры в СУД служит для определения температурного состояния двигателя. По его сигналу ЭБУ при запуске выставляет необходимое количество шагов РХХ, регулирует топливоподачу. Внутри датчика находится термистором с «отрицательным температурным коэффициентом» – при нагреве его сопротивление уменьшается. Высокая температура охлаждающей жидкости вызывает низкое сопротивление ( 70 Ом + 2 % при 130 °С), а низкая температура дает высокое сопротивление ( 100700 Ом ± 2 % при ‑ 40 °С). Контроллер подает на датчик температуры охлаждающей жидкости напряжение 5 В через резистор с постоянным сопротивлением, находящимся внутри контроллера. Температуру охлаждающей жидкости контроллер рассчитывает по падению напряжения на датчике, имеющем переменное сопротивление. Падение напряжения большое на холодном двигателе, и низкое – на прогретом. Соответственно, на холодном двигателе напряжение на датчике выше, на горячем – ниже. Это хорошо видно по осциллограммам.

ДС (Датчик скорости, Speed Sensor)

Датчик скорости служит для получении информации о скорости движения автомобиля для приборной панели и СУД, в которой используется для определения режимов движения автомобиля – ХХ и ПХХ.

В основе его работы заложен эффект Холла. Сигнал, получаемый ЭБУ с датчика скорости, импульсный и зависит от скорости движения автомобил я.

Датчик Холла

Датчик Холла в распределителе зажигания служит для своевременной подачи управляющих импульсов в коммутатор. С выхода датчика снимается напряжение, если в его зазоре находится стальной экран. Если экрана в зазоре нет, то напряжение на выходе датчика близко к нулю.

Читать еще:  Смазка медная высокотемпературная в аэрозольных баллонах
Ссылка на основную публикацию
Adblock
detector